toplamını
1/x1 +1/x2 =(x1+x2)/(x1.x2)
şeklinde ifade edebiliriz. Buradan
1/x1 +1/x2 = (m-3)/m^2 =f(m)
olsun. İstediğimiz f(m) i max yapmak
Ohalde f '(m)=0 olduğu yer kritik noktadır.
f '(m)= (-m+6)/m^3
olduğundan
f ' (m) =0 ise m=6 dır.
fonksiyon m=6 da max. değer alır.
On 6 Ocak, 17:07, Ali Oz <target...@gmail.com> wrote:
> fotograf.JPG
> 131KGörüntüleİndir
>
>
>
> Yeryuzunden selamlar
--
Yanlış anlaşılmalara ve polemik oluşturacak durumlara meydan verecek mesajlardan kaçınalım lütfen...
EKLEDİĞİNİZ RESİMLERİN BOYUTLARINA LÜTFEN DİKKAT EDİNİZ!!!...
YOLLADIĞINIZ MESAJLARA LÜTFEN KONU BAŞLIĞI YAZINIZ!!!...
http://www.facebook.com/pages/Matematik-Geometri/150709609688?ref=mf
Hiç yorum yok:
Yorum Gönder